
Rapid Applications Prototyping in Haskell
Workshop Session 5

2018-09-09



Objectives

I Monads
I Monads
I Monads
I Monads



Natural Transformations

A natural transformation is a function between functors that
doesn’t change the underlying type variable.

i.e any function h of the form:

h :: f a -> g a

Sometimes you might see a formal type constructor like this:

type (~>) f g = forall x. f x -> g x



Natural Transformations

For example headMaybe from RIO.List is a natural
transformation between [] and Maybe

headMaybe :: [a] -> Maybe a

We saw last time that sequenceA is a generic natural
transformation

sequenceA :: (Traversable a, Applicative f) => t (f a) -> f (t a)

that allowed us to get from a Graph [a] to a [Graph a]



Monads

A monad is a functor equipped with two natural transformations.

class Applicative m => Monad m where
return :: a -> m a
join :: m (m a) -> m a

return allows us to put a single value in the structure.

join allows us to collapse two layers of structure to a single layer.



Maybe and []

Are the following joins possible? How are they implemented?

join :: Maybe (Maybe a) -> Maybe a

join :: [[a]] -> [a]



Maybe and []

instance Monad Maybe where

return x = Just x

join (Just (Just x)) = Just x
join _ = Nothing

instance Monad [] where

return x = [x]

join :: [[a]] -> [a]
join = concat



Hom Join

What about the hom-functor (r ->)

return :: (a -> r -> a)

join :: (r -> (r -> a)) -> (r -> a)



Effects

Monads give us a way of expressing computational ‘effects’.

An ‘effectful’ function is usually thought of as an Arrow a -> m
b for some Monad m. We call these arrows ‘Kleisli’ arrows.



Effects

Depending on the type of Monad, we get different effects.

I In the case of Maybe, we get an ‘failure’ effect.
I In the case of [], we have a ‘non-determinism’ effect.
I In the case of IO, we have ‘real world’ or ‘side’ effects.
I In the case of (r ->), we an ‘implicit config’ or ‘reader’

effect.
I In the case of Either s, we get an ‘exception’ effect.
I In the case of (,s) for some monoid s, we get a ‘logging’

effect.
I In the case of (s -> (,s)) for some s we get a ‘state’

effect.



Kleisli Composition

We call arrows of the form a -> m b for some Monad m a
“Kleisli Arrow in m”.

Because we have the join operation, we are able to do this:

(>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)

This is called Kleisli composition, and is defined like so:

f >=> g = join . fmap g . f



Kleisli Composition

Kleisli composition feels a lot like the dot operator, but unlike
the dot operator there is implicit work done due to the join
operation.



Sequencing Effects

How does Kleisli composition let us sequence effects?

(>=>) :: (a -> Maybe b) -> (b -> Maybe c) -> (a -> Maybe c)

If we sequence two Maybe arrows, the result will be a Maybe
arrow which returns Nothing if either of the two previous arrows
returned Nothing, but the first arrow must evaluate.

Notice that the order of execution of these arrows is actually
guaranteed. If the first computation returns Nothing, we do not
have a b with which to call the second function. The second
function will only execute if the first function returns a Just
value.



Sequencing Effects

(>=>) :: (a -> IO b) -> (b -> IO c) -> (a -> IO c)

readFile is a Kleisli Arrow.

readFile :: FilePath -> IO ByteString

We can use regular composition (.) and Kleisli composition
(>=>) to get to where we want.

What is this doing?

readFile >=> writeFile "out"



mapM

mapM runs a Kleisli Arrow along a Traversable.

mapM :: (a -> m b) -> t a -> m (t b)

mapM readFile ["foo.txt", "bar.txt", "baz.txt"]

This is a really common use case.



Binding

Equivalently, if we already have an m a, and a Kleisli arrow, we
can use the bind operation.

(>>=) :: m a -> (a -> m b) -> m b

This is just (>=>) where the first arrow has already been
evaluated to a result m a.



Do notation

Why do we write some variable assignments as let y = f x and
some as y <- f x?

main :: IO ()
main = do

x <- readFile "foo.txt"
writeFile "bar.txt" x

This implictly desugars as readFile "foo.txt" >>=
writeFile "bar.txt"

This allows you to write an sequence of Kleisli arrows as if it
were an imperative program.



Do notation

Remember, the behaviour of the composition will be very
idiomatic to the specific monad you’re working in. For example,
lists have multiple values in, and so the <- notation draws out all
of them in parallel. This is basically a list comprehension.

deck :: [Card]
deck = do

s <- [Heart..]
v <- [Two..]
return (s, v)



Do notation

Here’s a function which might throw an exception.

divE :: Double -> Double -> Either String Double
divE a b = if b == 0 then Left "DivByZero error" else Right (a / b)

foo :: Double -> Either String Double
foo a = do

x <- divE a 3
y <- divE x 0
z <- divE y 4
return z



Reader Monad

The Reader monad is just a wrapper around the hom functor.

newtype Reader r a = Reader { runReader :: r -> a }
deriving (Functor, Applicative, Monad)

We can use this to implicitly pass around a context to
subroutines, similar to how objects with a self work. We can
acces the context with the ask :: m r function.

Reader is a Functor in a, and a Monad so we can chain functions
with this implicit self like so:

(>=>) :: (a -> Reader r b) -> (b -> Reader r c) -> (a -> Reader r c)
(>>=) :: Reader r a -> (a -> Reader r b) -> Reader r b



Reader Monad

data Config = Config {
port :: Int

, hostname :: String
} deriving (Eq, Show)

foo :: Reader Config Bool
foo = do

x <- ask
return (port x == 3000)



runReader

runReader :: Reader r a -> r -> a

let x = Config 3000 "localhost"
runReader foo x

This isn’t super useful by itself over just writing a function
Config -> IO Bool, but we can compose it with other effects.



ReaderT Transformer

A monad transformer is a Monad that can compose with the
effects of another monad.

Here is ReaderT, it’s the same as Reader except it wraps a
Kleisli Arrow from some fixed r for some other Monad m. This
can be any monad, including other monad transformers.

newtype ReaderT r m a = ReaderT { runReaderT :: r -> m a }

The approach RIO takes is this:

type RIO r a = ReaderT r IO a

with a corresponding runRIO :: RIO r a -> r -> a

So a program is just a composition of the hom monad over some
fixed context, and the IO monad.


