
Rapid Applications Prototyping in Haskell
Workshop Session 4

2018-09-02

Objectives

I Recap basic types and type classes.
I Using RIO and stack to write standalone scripts.
I More higher-kinded typeclasses, Foldable, Traversable,

Applicative.
I Quick look at algebraic-graphs.

Quick Recap

I Values are things we want to compute.

I Types are ways of classifying a range of values.

I Functions are ways of turning values of one type into
values of another type

I Type Classes are ways of classfying types by an interface
of functions available for that type.

I Higher Kinded Types make new types out of existing
types or “functions at the type level”

Simple scripts

Make a new blank file “foo.hs” and put

#!/usr/bin/env stack
-- stack runhaskell --resolver lts-12.13 --package rio

{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE OverloadedStrings #-}

import RIO

main = runSimpleApp $ do
logInfo $ "Hello World"

Now you can chmod a+x foo.hs and run it with ./foo.hs.

Remember you can export RIO_VERBOSE=true to add color and
timestamps.

Shelling out

You can use the proc functiona to shell out.

import RIO
import RIO.Process

main = runSimpleApp $ do
logInfo $ "Hello World"
proc "touch" ["tiny kitten"] (runProcess_)
(c, s, e) <- proc "uname" [] (readProcess)
logInfo $ displayShow $ s

Examples

This works really well with some libraries like diagrams, inline-r,
clay and lucid.

Here are some links:

I diagrams
I inline-r

https://gitlab.com/snippets/1753047
https://gitlab.com/snippets/1747036

Foldables

Foldables are things that can be iterated over and collapsed to a
result.

Type :info Foldable

class Foldable (t :: * -> *) where
foldr :: (a -> b -> b) -> b -> t a -> b
...

The first argument is a binary operation, like (+), (++) or (:)

The second argument is an initial value to start with (in case the
Foldable is empty).

The third argument is the foldable, with some as inside.

Foldable

Maybe and [] are both Foldable, so we can do things like:

sumList :: [Int] -> Int
sumList = foldr (+) 0

But why do this for just lists? We can sum any foldable with the
same definition

sumFoldable = foldr (+) 0

What’s the type of sumFoldable?

DeriveFoldable

We can derive Foldable in the same way we derived Functor for
well behaved data structures

{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveFunctor #-}

data V3 a = V3 a a a
deriving (Eq, Show, Functor, Foldable)

Algebraic Graphs

algebraic-graphs is a great library that defines the following data
structure.

data Graph a =
Empty

| Vertex a
| Connect (Graph a) (Graph a)
| Overlay (Graph a) (Graph a)
deriving (Functor, Foldable, Show, Traversable)

Graph is higher kinded, takes a type parameter ‘a’, which allows
us to talk about a “graph of ’a’s”

This probably looks like a perculiar way to describe a graph.
What values can a graph like this be?

Graphs are naturally Functors and Foldables.

Algebraic Graphs
#!/usr/bin/env stack
{- stack runhaskell --resolver lts-12.13

--package rio --package algebraic-graphs -}

{-# LANGUAGE NoImplicitPrelude #-}

import RIO
import Algebra.Graph

myGraph :: Graph String
myGraph = overlay

(vertex "spatula")
(connects $ [vertex "quux",

vertices ["foo", "bar", "baz"]])

main = runSimpleApp $ do
logInfo $ displayShow $ myGraph
logInfo $ displayShow $ foldr (++) "" myGraph

Currying/Uncurrying

We know that haskell has two ways of representing two argument
functions.

(a, b) -> c
a -> b -> c

Haskell provides two functions to switch between these
representations:

curry :: ((a, b) -> c) -> a -> b -> c
uncurry :: (a -> b -> c) -> (a, b) -> c

This of course has the property that

curry . uncurry = id
uncurry . curry = id

Applicative Functors

A lax monoidal functor, or “applicative” functor is a functor that
can lift functions of multiple arguments.

Remember the signature for fmap fmap :: (a -> b) -> f a
-> f b

class Functor f => Applicative f where
liftA2 :: (a -> b -> c) -> f a -> f b -> f c
(<*>) :: f (a -> b) -> f a -> f b

liftA2 is a two argument analogue of fmap, it lifts a two
argument function into the higher kinded type.

The (<*>) is pronounced splat, sometimes called ‘ap’, it is
defined as (<*>) = liftA2 id

Maybe, IO, [], and the hom functor (r ->) are all Applicatives

Applicative Functors

One project euler problem says

“Find the largest palindrome made from the product of two
3-digit numbers.”

What are all the products of two digit numbers?

We can use liftA2 to take normal multiplication of numbers and
turn it into a function that multiplies two lists of numbers.

liftA2 (*) [100..999] [100..999]

Sometimes the “fmap-then-splat” notation is used to the same
effect.

(*) <$> [100..999] <*> [100..999]

Similarly we can lift binary operations to operations which act
on two Maybes, or two IO values.

Applicative Functors

Another list example:

data Value = Two | Three | Four | Five | Six |
Seven | Eight | Nine | Ten |
Jack | Queen | King | Ace

deriving (Eq, Ord, Enum, Show, Bounded)

data Suit = Hearts | Clubs | Spades | Diamonds
deriving (Eq, Ord, Enum, Show, Bounded)

type Card = (Value, Suit)

type Desk = [Card]

deck = liftA2 (,) [Two..] [Hearts..]
-- deck = (,) <$> [Two..] <*> [Hearts..]

The Hom Functor is Applicative

Let’s continue the euler problem.

Recall the hom functor (r ->), or “all of the functions
emanating from a type r”.

Just fill it in algebraically to see what fmap and splat do.

fmap :: (a -> b) -> f a -> f b

becomes

fmap :: (a -> b) -> (r -> a) -> (r -> b)

This is just the same as the dot (.) operator, so the fmap for the
hom functor is just the dot operator (.).

The Hom Functor is Applicative

liftA2 :: a -> b -> c -> f a -> f b -> f c
(<*>) :: f (a -> b) -> f a -> f b

becomes

liftA2 :: a -> b -> c -> (r -> a) -> (r -> b) -> (r -> c)
(<*>) :: (r -> a -> b) -> (r -> a) -> r -> b

So what good is this?

IsPalindrome

Let’s try to make an isPalindrome :: String -> Bool that
decides whether or not a string is a palindrome.

isPalindrome x = ???

IsPalindrome

isPalindrome x = x == reverse x

Put this into http://pointfree.io/ and see what happens.

IsPalindrome

So equivalently:

isPalindrome = (==) <*> reverse

Can you say why?

Traversable

A Traversable is just something that is both Functor and
Foldable.

class (Functor t, Foldable t) => Traversable t

This has some interesting effects when you mix it with an
applicative.

traverse :: (Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)

sequenceA :: (Traversable t, Applicative f) =>
t (f a) -> f (t a)

Functions of the form (a -> f b) for some function f are called
“Stars”.

traverse takes a a -> f b and turns it into a t a -> f (t b)

Traversable

sequenceA is just equivalent to traverse id

There’s also a function for which is just traverse with its
arguments flipped, and works like a for loop.

for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)

We’ll look more at these when we do monads, for now let’s try a
simple sequence.

Traversable

Recall our graph earlier myGraph :: Graph String

Remember that a String = [Char], so, myGraph :: Graph
[Char]

Graph is a Traversable, and [] is an Applicative, so this is a t (f a)

So we can sequenceA myGraph

What happens?

Traversable

It turns a Graph [Char] into a [Graph Char], or a list of
possible Graphs of different characters.

sequenceA myGraph
:t sequenceA myGraph

How many Graphs has it produced?

length $ sequenceA myGraph

