Rapid Applications Prototyping in Haskell
Workshop Session 4

2018-09-02

Objectives

> Recap basic types and type classes.

» Using RIO and stack to write standalone scripts.

» More higher-kinded typeclasses, Foldable, Traversable,
Applicative.

> Quick look at algebraic-graphs.

Quick Recap

> Values are things we want to compute.
> Types are ways of classifying a range of values.

» Functions are ways of turning values of one type into
values of another type

> Type Classes are ways of classfying types by an interface
of functions available for that type.

> Higher Kinded Types make new types out of existing
types or “functions at the type level”

Simple scripts

Make a new blank file “foo.hs” and put
#!/usr/bin/env stack

-- stack runhaskell --resolver lts-12.13 --package Ti0

{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE OverloadedStrings #-}

import RIO
main = runSimpleApp $ do
logInfo $ "Hello World"

Now you can chmod a+x foo.hs and run it with ./foo.hs.

Remember you can export RIO_VERBOSE=true to add color and
timestamps.

Shelling out

You can use the proc functiona to shell out.

import RIO
import RIO.Process

main = runSimpleApp $ do
logInfo $ "Hello World"
proc "touch" ["tiny kitten"] (runProcess_)

(c, s, e) <- proc "uname" [] (readProcess)
logInfo $ displayShow $ s

Examples

This works really well with some libraries like diagrams, inline-r,
clay and lucid.

Here are some links:

> diagrams
» inline-r

https://gitlab.com/snippets/1753047
https://gitlab.com/snippets/1747036

Foldables

Foldables are things that can be iterated over and collapsed to a
result.

Type :info Foldable

class Foldable (t :: * —-> %) where
foldr :: (a->b ->b) >b ->ta->b

The first argument is a binary operation, like (+), (++) or (:)

The second argument is an initial value to start with (in case the
Foldable is empty).

The third argument is the foldable, with some as inside.

Foldable

Maybe and [] are both Foldable, so we can do things like:

sumList :: [Int] -> Int
sumList = foldr (+) 0

But why do this for just lists? We can sum any foldable with the
same definition

sumFoldable = foldr (+) O

What’s the type of sumFoldable?

DeriveFoldable

We can derive Foldable in the same way we derived Functor for
well behaved data structures

{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveFunctor #-}

data V3 a = V3 a a a
deriving (Eq, Show, Functor, Foldable)

Algebraic Graphs

algebraic-graphs is a great library that defines the following data
structure.

data Graph a =
Empty
| Vertex a
| Connect (Graph a) (Graph a)
| Overlay (Graph a) (Graph a)
deriving (Functor, Foldable, Show, Traversable)

Graph is higher kinded, takes a type parameter ‘a’; which allows
us to talk about a “graph of ’'a’s”

This probably looks like a perculiar way to describe a graph.
What values can a graph like this be?

Graphs are naturally Functors and Foldables.

Algebraic Graphs
#!/usr/bin/env stack
{- stack runhaskell --resolver lts-12.13
--package rto —--package algebraic-graphs -}

{-# LANGUAGE NoImplicitPrelude #-}

import RIO
import Algebra.Graph

myGraph :: Graph String
myGraph = overlay
(vertex "spatula")
(connects $ [vertex "quux",
vertices ["foo", "bar", "baz"]])

main = runSimpleApp $ do
logInfo $ displayShow $ myGraph
logInfo $ displayShow $ foldr (++) "" myGraph

Currying/Uncurrying

We know that haskell has two ways of representing two argument
functions.

(a, b) > ¢
a->b ->c

Haskell provides two functions to switch between these

representations:
curry :: ((a, b) -=>c¢c) ->a ->b ->c¢
uncurry :: (a => b -> ¢) -> (a, b) > ¢

This of course has the property that

curry . uncurry = id
uncurry . curry = id

Applicative Functors

A lax monoidal functor, or “applicative” functor is a functor that
can lift functions of multiple arguments.

Remember the signature for fmap fmap :: (a -> b) -> f a
> fb

class Functor f => Applicative f where
1iftA2 :: (@ > b >c) >fa->fb->fc
(<x>) :: f (a->b) >fa->fhb

liftt A2 is a two argument analogue of fmap, it lifts a two
argument function into the higher kinded type.

The (<*>) is pronounced splat, sometimes called ‘ap’, it is
defined as (<*>) = 1iftA2 id

Maybe, I0, [1, and the hom functor (r ->) are all Applicatives

Applicative Functors

One project euler problem says

“Find the largest palindrome made from the product of two
3-digit numbers.”

What are all the products of two digit numbers?

We can use 1iftA2 to take normal multiplication of numbers and
turn it into a function that multiplies two lists of numbers.

1iftA2 (%) [100..999] [100..999]

Sometimes the “fmap-then-splat” notation is used to the same
effect.

(x) <$> [100..999] <*> [100..999]

Similarly we can lift binary operations to operations which act
on two Maybes, or two 10 values.

Applicative Functors

Another list example:

data Value = Two | Three | Four | Five | Six |
Seven | Eight | Nine | Ten |
Jack | Queen | King | Ace
deriving (Eq, Ord, Enum, Show, Bounded)

data Suit = Hearts | Clubs | Spades | Diamonds
deriving (Eq, Ord, Enum, Show, Bounded)

type Card = (Value, Suit)

type Desk = [Card]

deck = 1iftA2 (,) [Two..] [Hearts..]
—— deck = (,) <$> [Two..] <*> [Hearts..]

The Hom Functor is Applicative

Let’s continue the euler problem.

Recall the hom functor (r ->), or “all of the functions
emanating from a type r”.

Just fill it in algebraically to see what fmap and splat do.
fmap :: (a ->b) > f a->fb

becomes

fmap :: (a => b) -> (r -> a) -> (r -> b)

This is just the same as the dot (.) operator, so the fmap for the
hom functor is just the dot operator (.).

The Hom Functor is Applicative

1liftA2 :: a->b >c >fa->fb->1Ffc
(<x>) :: f (a->b) >fa->fhb

becomes
1iftA2 :: a =>b > c -> (r > a) > (r > b) > (r -> ¢)
(<%>) 1+ (r > a ->b) > (r >a) >r —>0b

So what good is this?

[sPalindrome

Let’s try to make an isPalindrome :: String -> Bool that
decides whether or not a string is a palindrome.

isPalindrome x = 777

[sPalindrome

isPalindrome x = X == reverse X

Put this into http://pointfree.io/ and see what happens.

[sPalindrome

So equivalently:
isPalindrome = (==) <*> reverse

Can you say why?

Traversable
A Traversable is just something that is both Functor and
Foldable.
class (Functor t, Foldable t) => Traversable t

This has some interesting effects when you mix it with an

applicative.
traverse :: (Traversable t, Applicative f) =>
(a->fb) >ta->1f (tb)
sequenceA :: (Traversable t, Applicative f) =>

t (fa) >1f (¢ a)

Functions of the form (a -> f b) for some function f are called
“Stars”.

traverse takesa a -> f band turnsitintoat a -> £ (t b)

Traversable

sequenceA is just equivalent to traverse id

There’s also a function for which is just traverse with its
arguments flipped, and works like a for loop.

for :: (Traversable t, Applicative f) =>t a -> (a -> f |

We’ll look more at these when we do monads, for now let’s try a

simple sequence.

Traversable

Recall our graph earlier myGraph :: Graph String

Remember that a String = [Char], so, myGraph :: Graph
[Char]

Graph is a Traversable, and [] is an Applicative, so thisis a t (f a)
So we can sequenceA myGraph

What happens?

Traversable

It turns a Graph [Char] into a [Graph Char], or a list of
possible Graphs of different characters.

sequenceA myGraph
:t sequenceA myGraph

How many Graphs has it produced?

length $ sequenceA myGraph

