
Rapid Applications Prototyping in Haskell
Workshop Session 3

2018-08-02



Objectives

I Understand what we mean by a Higher Kinded Type
I Introduction to the stock higher kinded types, [], IO, Maybe,

Identity, (,), Either, (->)
I Introduction to higher kinded type classes: Functor and

Foldable
I Interact with YAML and error handling.



Higher-Kinded Types

We know how to check the type of a value with :t. Just as
values have types, types have kinds.

We can check the kind of a type with :k.

Types with kind * we call simple or ‘concrete’ types. We’ve seen
many of these Int, String, Bool, Ordering, [Bool]. These are
types that are completely specified.



Higher-Kinded Types

Some type constructors aren’t completely specified. They take
types to complete them. For example, the list [] constructor
itself, requires a type to complete it and turn it into a concrete
type.

:k []
[] :: * -> *

IO is another example. The type constructor IO :: * -> * is
higher kinded. The type IO String is concrete.



Maybe

Let’s take a look at the Maybe type with :info Maybe

data Maybe a = Nothing | Just a

Think of this like a list that has a maximum size of 1. It’s either
Nothing, or a single value indicated by ‘Just a’

Check we know what we mean by the following statements in the
interpreter

:t Nothing
:t Just "foo"
:t Just
:k Maybe
:k Maybe String



Pair

The product pair type is higher-kinded, but it takes two types.
Take a look at :info (,)

data (,) a b = (,) a b

What does all of this mean?

:k (,)
(,) :: * -> * -> *
:k (Int, String)
(Int, String) :: *
:k (,) Int
(,) Int :: * -> *



Identity

Identity is just a box that contains exactly one element.

data Identity a = Identity a
:k Identity
Identity :: * -> *



Either

The coproduct Either is higher-kinded and takes two types.

data Either a b = Left a | Right b

We can make values of type ‘Either a b’ by using the Left and
Right constructors.

let x = Left 5 :: Either Int String
let y = Right "foo" :: Either Int String

What does this line mean in :info Either?

instance (Eq a, Eq b) => Eq (Either a b)



The function arrow (->)

The function arrow (->) is acually a higher kinded type. It takes
two types a and b and returns the function type a -> b. It’s
:info definitition is a little wonky for internal reasons but it
works the same.

For a fixed r, we say the type ((->) r) is the type of all the
functions emanating from r. Also called a hom-functor. This is
useful later.



IO

IO is a higher kinded type specially reserved for IO values.

You can see this in functions like readFile

:t readFile
readFile :: FilePath -> IO String

IO type contains exactly one value.



Maps and HashMaps

Maps and HashMaps are higher kinded types that takes a key
type, and a value type.

:k HashMap
HashMap :: * -> * -> *

Their definition is also wonky so don’t worry about it too much.



Functors/Foldables

Higher kinded types can have type classes associated with them
which allow us to talk about their capabilities.

The simplest of these are Functor and Foldable



Functors

The functor class has the following definitions

class Functor f where
fmap :: (a -> b) -> f a -> f b

fmap is a generalisation of the more familiar map :: (a -> b)
-> [a] -> [b] We abstract the list part into a more general
higher kinded container. We can use fmap in place of map for
lists, and we can use it to run a function on the values of other
higher kinded types. We can see the functors available to use
with :info Functor

fmap (+1) [1,2,3]



Functor examples

Maybe, Identity and IO are functors.

let x = Just 3 :: Maybe Int
fmap (+1) x



Functor examples

(,), Either and HashMap are functors in their right argument,
leaving the left fixed.

fmap (+1) ("foo", 6)
fmap (+1) Right 5
fmap (+1) Left "foo"

Try using fmap with a HashMap.



Making our own functors

data V3 a = V3 a a a deriving (Eq, Show)

instance Functor V3 where
fmap f (V3 x y z) = V3 (f x) (f y) (f z)

OR

Add DeriveFunctor to your language extensions and:

data V3 a = V3 a a a deriving (Eq, Show, Functor)



Now we can fmap

let v = V3 1 2 3

fmap (*2) v



YAML

http://hackage.haskell.org/package/yaml-0.9.0/docs/Data-
Yaml.html

Look at the decoding functions for yaml

decodeEither’ :: FromJSON a => ByteString -> Either ParseException a

decodeFileEither :: FromJSON a => FilePath -> IO (Either ParseException a)

decodeThrow :: (MonadThrow m, FromJSON a) => ByteString -> m a

decodeFileThrow :: (MonadIO m, FromJSON a) => FilePath -> m a


