
Rapid Applications Prototyping in Haskell
Workshop Session 2

2018-07-26

Objectives

I Introduction to Constructive Type Theory
I Introduction to Simple Algebraic Data Types: Products and

Sum Types
I Introduction to basic Type Classes: Semigroup, Monoid, Eq,

Ord and Show
I Run RIO with a specific environment.

Constructive type theory

The Haskell type system has an intuitive shape. We can specify
simple types as ranging over a set of values, and we can build
more complex types out of existing simple types with algebraic
constructions.

We can also talk about classes of types by what we can say it is
possible to do with them.

Today we focus on simple types and their type classes in the
standard library.

Let’s cd into our project from last time and run stack ghci,
and be sure to import RIO

Type Classes

A type class is an interface into a type. We can declare type
signatures in the class and algebraic laws that the
implementations must satisfy.

Only type signatures are enforced by the compiler. Laws are not
enforced by the compiler, they are enforced informally.

When reading or documenting a type class description, the laws
should be included as documentation.

A type that is able to implement all signatures of the type class
whilst satisfying all of the documented laws is called an
instance of the class.

Semigroups

Semigroups are a class of type with an binary operator <>,
pronounced ‘smush’.

class Semigroup a where
(<>) :: a -> a -> a

that must satisfy the associative law:

(x <> y) <> z = x <> (y <> z)

Types that implement this interface are those that have a
natural way to smush their values together.

Examples of Semigroups

Strings can be smushed together

"Hello" <> ", " <> "World!"

and in fact, any [a].

[1,2,3] <> [4,5,6]

And all of the different String-like variants in RIO (ByteString,
Text, Utf8Builder)

Examples of Semigroups
RIO has different kind of dictionary types, Map and HashMap.
These are both Semigroups.

Container types like List, Set, Map and HashMap often overload
names, so you should import them qualified to avoid name
collisions.

import qualified RIO.HashMap as HM

let x = HM.fromList [(5, ’a’), (3, ’b’)] :: HM.HashMap Int Char
let y = HM.fromList [(4, ’c’), (2, ’a’)] :: HM.HashMap Int Char

x <> y

In the case of two entries colliding, the left hand side takes
precedence. (By convention).

let z = HM.fromList [(5, ’b’)] :: HM.HashMap Int Char
x <> y <> z

Monoids

A Monoid is a Semigroup with an special empty element called
mempty:

class Semigroup a => Monoid a where
mempty :: a

that satisfies the identity law:

mempty <> x = x <> mempty = x

Monoids

Lists and HashMaps are also Monoids. You can see the mempty
element for each type by specifying the type of mempty.

mempty :: String
mempty :: [a]
mempty :: HashMap Int Char

In Monoid language, (<>) is also called mappend. This is
historical.

Diagrams

A good paper on monoids is Brent Yorgey’s Monoids : Theme
and Variations

https://repository.upenn.edu/cgi/viewcontent.cgi?article=
1773&context=cis_papers

Diagrams form a monoid by stacking one on top of the other.

https://repository.upenn.edu/cgi/viewcontent.cgi?article=1773&context=cis_papers
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1773&context=cis_papers

Other type classes

Other common type classes in the standard library are Eq, Ord,
Show, Read, Bounded, Enum

You can type for example :info Eq to get information on a type
class - it’s signatures and which types in scope it is defined for.

Eq

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

Ord

class Ord a where
(<) :: a -> a -> Bool
(<=) :: a -> a -> Bool
...

Show

The Show typeclass gives us a way of printing to the screen.

class Show a where
show :: a -> String

Algebraic Data Types

Haskell has various ways of constructing new types from old
types.

The simplest way is using product and sum (also called
coproduct) types.

Products

A product type takes two or more types to form a compound
type (much like say a struct in C)

You can do this either anonymously as a pair (a,b), or as a
record.

For example

data Dragon = Dragon {
name :: String

, heads :: Int
}

Important note: Note, the Dragon on the left is a type
constructor, the Dragon on the right is a value constructor. This
is one of the biggest gotchas for beginners.

Making a Dragon

This actually creates three functions for us.

-- Dragon :: String -> Int -> Dragon
-- name :: Dragon -> String
-- heads :: Dragon -> Int

We can make a dragon with

let x = Dragon "Bob" 3

Product Lemmas for Eq and Show

If types a and b can each be compared for equality, then their
product (a,b) can also be compared for equality.

instance (Eq a, Eq b) => Eq (a, b) where
(x1, y1) == (x2, y2) = x1 == x2 && y1 == y2

If types a and b can each be printed to String, then their
product can be printed to a String.

instance (Show a, Show b) => Show (a, b) where
show (x, y) = "(" <> show x <> "," <> show y <> ")"

Try it

("foo", 3) == ("foo", 3)
show (3,4)

Deriving Eq and Show

Haskell can use this lemma to automatically derive the type class
instances for Eq and Show.

data Dragon = Dragon {
name :: String

, heads :: Int
} deriving (Eq, Show)

This allows us to print our dragons to the screen.

let x = Dragon "Bob" 3
let y = Dragon "Rainbow" 4
x
y
x == y

Product Lemma for Semigroups

If types a and b are Semigroups, then their product is a
Semigroup

instance (Semigroup a, Semigroup b) => Semigroup (a, b) where
(x1, y1) <> (x2, y2) = (x1 <> x2, y1 <> y2)

Smushing a pair just requires us to smush together the individual
components.

Try it

("foo", "quux") <> ("bar", "spatula")

Product Lemma for Monoids

If types a and b are Monoids, then their product is a Monoid

instance (Monoid a, Monoid b) => Monoid (a, b) where
mempty = (mempty, mempty)

However, Haskell will not automatically derive these for our
product record type. It’s theoretically possible, but you often
want something else. In our case, Int isn’t a Monoid anyway.

Dragon the Semigroup

Let’s define our own Dragon Semigroup instance. Our smushed
Dragon will be a Dragon with the names smushed together, and
the combined sum of heads of the two dragons.

instance Semigroup Dragon where
Dragon n1 h1 <> Dragon n2 h2 =

Dragon (n1 <> n2) (h1 + h2)

let x = Dragon "Bob" 3
let y = Dragon "Rainbow" 4
x <> y

The Dragon Monoid

An empty Dragon is a Dragon with no name, and no heads.

instance Monoid Dragon where
mempty = Dragon "" 0

There’s no point to smush with this dragon.

Void

We have a type with no elements, called Void.

It is declared in Haskell as

data Void

You can see the data declaration by typing :info Void

This is used in one function, the absurd function that you can
never call

absurd :: Void -> a

Unit

The type that contains one element is called unit, written ().

Type :info () to see the data declaration.

data () = ()

In a data declaration, the left hand side indicates the type, where
the right hand declares the possible values. Here we see the unit
type, () has one possible value, also called ().

You can also see this by checking the type of () to see

() :: ()

Bool

Look at the data declaration for Bool with :info Bool, it has
two possible values, False and True

data Bool = False | True

This is called a sum (or coproduct) type.

Ordering

Look at the data declaration for Ordering with :info
Ordering, it has three possible values, LT, EQ and GT.

data Ordering = LT | EQ | GT

Logging Dragons

RIO’s logInfo takes a Utf8Builder, which is a Monoid. We can
get from a Show a to a Utf8Builder with displayShow ::
Show a => a -> Utf8Builder.

main :: IO ()
main = do

let x = Dragon "Rainbow" 4
runSimpleApp $ do

logInfo $ "Hello, " <> (displayShow . name $ x)

runRIO

Instead of runSimpleApp, we’re going to use runRIO with our
own environment that just contains a logFunc.

HasLogFunc

logInfo has the signature

logInfo :: (MonadIO m, MonadReader env m, HasLogFunc env, HasCallStack) => Utf8Builder -> m ()

It’s ok if this is jibberish. For now, all we’re interested in is
making sure The part we’re particularly interested in is the fact
that the environment is an instance of HasLogFunc.

class HasLogFunc env where
logFuncL :: Lens’ env LogFunc

We won’t get into lenses, but think of this as an object getter.
We have a way to extract a logFunc from the environment.

LogFunc

A logFunc itself is an instance of HasLogFunc. That’s helpful.
We don’t need to do anything.

Making our own log function

main :: IO ()
main = do

let x = Dragon "Rainbow" 4
logStdout <- logOptionsHandle stdout True
withLogFunc logStdout $ \lfs ->

runRIO lfs $ do
logInfo $ "Hello, " <> (displayShow . name $ x)

Tee

main :: IO ()
main = do

let x = Dragon "Rainbow" 4
withBinaryFile "log.txt" WriteMode $ \logHandle -> do

logStdout <- logOptionsHandle stdout True
logFile <- logOptionsHandle logHandle True
withLogFunc logStdout $ \lfs ->
withLogFunc logFile $ \lfo ->
runRIO (lfs <> lfo) $ do
logInfo $ "Hello, " <> (displayShow . name $ x)

