
Rapid Applications Prototyping in Haskell
Workshop Session 1

2018-07-19



Objectives

I Understand what we mean by statically typed functional
programming.

I Be able to use the basic command line tools: stack & ghci.
I Know where to find web resources (guides, libraries, docs).
I Introduction to the RIO prelude.
I Write “Hello, world.”



You will need

I A copy of stack from
https://docs.haskellstack.org/en/stable/README/

I An account on gitlab.com

Don’t use distro managers to install Haskell packages. Always
use stack.

Run stack ghci to get into the interpreter.

Check you can run

1 + 1
reverse "Hello"
map (+1) [1,2,3]

https://docs.haskellstack.org/en/stable/README/


What is a type?

A type is a object that indicates how a value might behave.

Every term or value has a type.

We denote a value x that has type A by

x :: A

Some simple type denotations in Haskell might be

5 :: Int
"foo" :: String
True :: Bool

What happens if you type

"foo" :: Int



Type inference

Haskell has an inference engine that allows it to infer the type of
a given expression. If it can’t resolve the types, it will fail your
code and will not execute it. This stops us from running
programs that make no sense. We call this static typing.

You very often don’t need to specify the types of your terms
since the inference engine will figure it out. You can ask Haskell
for the type of a term x with :t x.

What does ghci say about the following terms?

"foo"
True
("foo", True)
5
5 :: Int



What is a function?

A function is a value that takes values of one type, and turns
them into values of another type. Since functions are values, they
have types. For a function that takes values of type A and turns
them into values of type B, we write:

f :: A→ B

We call A→ B the signature. Some simple function signatures in
haskell are

not :: Bool -> Bool
even :: Int -> Bool
(+) :: Int -> Int -> Int

You can retrieve the type signature for any function by calling :t



Calling functions

We can call functions by supplying them with an argument. Try
the following.

not True
even 4
1 + 1



Parametric polymorphism

When we talk about concrete types in function signatures we use
upper case, for example Int and String. When we talk about
polymorphic types we use lowercase letters such as a. What is
the type signature for the function reverse? What about map
and filter?



Parametric polymorphism

reverse :: [a] -> [a]
map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]



Function composition

Functions compose.

Say we have two functions f :: a→ b, and g :: b→ c, we can
compose them together to make a function g ◦ f :: a→ c.

Function composition is associative. That is if h :: c→ d

h ◦ (g ◦ f) = (h ◦ g) ◦ f



Function composition

Function composition in Haskell is done with the dot . operator.

odd = not . even

firstWord = head . words

We build large applications by composing small modular parts.



Prototyping

This is your toolkit for massive success in life:

I stack, hlint, ghcid, brittany, tintin
I gitlab (https://gitlab.com)
I stackage (https://www.stackage.org/)
I zenhaskell (https://zenhaskell.gitlab.io)
I The RIO prelude

stack can install globally, or locally.

When installing a tool like hlint globally, just sit in your home
directory and run

stack install hlint



A stack project

Run stack new foo to make a new project

This will make an application with a package.yaml, a stack.yaml,
with app, src (lib) and test directories.

cd into it and run stack build, followed by stack exec --
foo-exe



Adding basic CI

Make a .gitlab-ci.yaml file and add the follwing:

image: zenhaskell/foundation:lts-12.1

build:
stage: build
script:
- stack build



Haskell 2010

The classic standard library can be found at

I http://hackage.haskell.org/package/base

It’s perfectly adequate, but we’re going to be using something
better.

http://hackage.haskell.org/package/base


Super Haskell 2018

Super Haskell 2018 uses RIO and a bunch of language extensions
that are considered non-breaking.

I http://hackage.haskell.org/package/rio

RIO is a custom standard library specifically aimed at powering
user-facing applications.

http://hackage.haskell.org/package/rio


RIO

RIO is named after a type

type RIO env a = ReaderT env IO a

Which in layman’s means “take a config, and then do something
with it”. This is the basic template for all applications, put
together a config (“the environment”) type, declare the config’s
values, and then do something with it.



RIO Environments

The env part of the RIO will often be described in terms of
certain capabilities that it possesses, denoted by ‘HasX’
typeclasses. You can think of the env part of RIO like a toolkit
that descibes what your app can guarantee access to. For
example, most envs will have a HasLogFunc, indicating that you
can log things to the console or to a file.



Bringing in RIO

Add - rio to the dependencies: section of your package.yaml
file.

You’ll also want to add a section underneath that reads

default-extensions:
- NoImplicitPrelude
- OverloadedStrings

And then in app/Main.hs and src/Lib.hs add in a line that
says

import RIO



Our first app

We’ll use the SimpleApp from the RIO.Prelude.Simple module
which is exported by default. SimpleApp has a predefined
logging function and a predefined process context for running
external processes so we don’t have to specify our own just yet.
For a real app, we would define our own environment.

We’ll change main to log “Hello, world!”. Your app/Main.hs
should look like this:

module Main where

import RIO

main :: IO ()
main = runSimpleApp $ do

logInfo "Hello World!"



Our first app

Build with stack build and run with stack exec -- foo-exe.

export the environment variable export RIO_VERBOSE=true and
run it again.



Further resources:

I A non linear guide to haskell
http://locallycompact.gitlab.io/ANLGTH/

I Category theory for programmers
https://www.youtube.com/playlist?list=
PLbgaMIhjbmEnaH_LTkxLI7FMa2HsnawM_

I Parallel and Concurrent Haskell
https://www.youtube.com/playlist?list=
PLbgaMIhjbmEm_51-HWv9BQUXcmHYtl4sw

I Data61 Course https://github.com/data61/fp-course

http://locallycompact.gitlab.io/ANLGTH/
https://www.youtube.com/playlist?list=PLbgaMIhjbmEnaH_LTkxLI7FMa2HsnawM_
https://www.youtube.com/playlist?list=PLbgaMIhjbmEnaH_LTkxLI7FMa2HsnawM_
https://www.youtube.com/playlist?list=PLbgaMIhjbmEm_51-HWv9BQUXcmHYtl4sw
https://www.youtube.com/playlist?list=PLbgaMIhjbmEm_51-HWv9BQUXcmHYtl4sw
https://github.com/data61/fp-course


Roadmap
Coming Next
I Algebraic Data Types
I Semigroups, Monoids, Functors
I Category Theory
I Logging strategies
I More on Typeclasses
I Custom environments
I Decoding YAML

On the horizon
I Applicative Functors, Monads, Lenses
I Command Line Interfaces
I Making REST servers
I GTK GUIs
I GL with gloss
I SQL
I Games with SDL2


